
1

CEM to CIMI Conversion White Paper

Table of Contents
1. Introduction .. 1
2. Clinical Element Model .. 2
3. CIMI Model ... 4
4. Transformation ... 4
5. Conclusion ... 8

1. Introduction
This paper will describe our most recent approach to the transformation of detailed clinical models from the
Clinical Element Model (CEM) standard to the Clinical Information Modeling Initiative (CIMI) version
2 standard. CIMI is currently a working group within Health Level Seven (HL7). The CEM models used
as the source for the translation will be provided by Intermountain Healthcare.

In detailed clinical modeling there is a general approach shown in Figure 1, “Reference Model Constraint
Paradigm”, that most standards have taken where there is a reference model which is then constrained with
constraint models. In Figure 2, “Detailed Clinical Modeling Standards”, the reference model and constraint
model of various standards are shown. Additional information shown is the syntax used to describe the
reference or constraint model, and if the standard is shaded grey, this symbolizes that clinical content is
modeled in this part of the standard.

Figure 1. Reference Model Constraint Paradigm

The reference model for the CEM standard is called the Abstract Instance Model. It is not formally defined
with a syntax, but instead is defined in a specification which can then be implemented in various imple-
mentations such as java or xml. This reference model is very small and has no defined clinical content.
Instead, clinical content is defined only in the constraint models of the CEM standard which are written
in Clinical Element Modeling Language (CEML).

The reference model for the CIMI v2 standard describes clinical content in both the reference and constraint
models using the Archetype formalism developed by OpenEHR. The reference model is described in the
Basic Meta-Model (BMM) using Object Data Instance Notation (ODIN) and the constraint models are
described as Archetypes with Archetype Definition Language (ADL).

CEM to CIMI Con-
version White Paper

2

Figure 2. Detailed Clinical Modeling Standards

2. Clinical Element Model
The Clinical Element reference model, as seen in Figure 3, “Clinical Element Abstract Instance Model”,
is a recursive model. In the figure, the stacks of grey disks within 'items', 'mods', and 'quals' are meant to
represent a collection of referenced Clinical Elements. These Clinical Elements could then reference other
Clinical Elements, and so on, leading to a recursive tree with infinite variety.

An instance of a Clinical Element could look like Figure 4, “Clinical Element Instance”. In reality, one
could put any data into these slots in the reference model, and the reference model has no inherent mech-
anism to validate whether this is good data or nonsense. This is where the Clinical Element Constraint
Model comes into play. These constraint models are called CEMs and are written in CEML. A possible
CEML example for the previous instance is shown in Example 1, “CEML for Systolic Blood Pressure”.
If we compare the instance to the CEML, we can see the instance contains a field called type with a value
of 'SystolicBloodPressure'. This value is the name of the CEM that will be used to validate the instance,
which is the CEML example given. The CEML then states the instances must contain a key with a code
of 'SystolicBloodPressure_CODE', must have a datatype of type 'Quantity', and has a constraint that states
the Quantity must have a unit of 'MillimetersOfMercury_CODE'. Also stated in the CEML is that an al-
lowable qualifier can reference the 'BodyPosition' CEM, but that the valueset within 'BodyPosition' has
been constrained to 'SBP_BodyPosition_VALUESET_CODE'.

CEM to CIMI Con-
version White Paper

3

Figure 3. Clinical Element Abstract Instance Model

Figure 4. Clinical Element Instance

CEM to CIMI Con-
version White Paper

4

Example 1. CEML for Systolic Blood Pressure

 cem SystolicBloodPressure
 key SystolicBloodPressure_CODE
 data Quantity
 qual BodyPosition
 id bodyPosition
 card 0-1
 constraint data.quantity.unit_code
 value MillimetersOfMercury_CODE
 constraint bodyPosition.data.codeableConcept.valueset
 value SBP_BodyPosition_VALUESET_CODE

3. CIMI Model
The CIMI Reference Model, as seen in Figure 5, “CIMI model with Archetype Constraint”, contains clin-
ical content and is very similar to a UML model, but is declared in a BMM. In fact, CIMI modelers are
currently modeling in UML and then generating the BMM from the UML model. On the left hand side
of the figure, is an example of a possible standard lab observation model described with the BMM. In the
BMM, models are declared along with their named properties. The properties can either reference other
defined models or datatypes, and a cardinality can be assigned.

Figure 5. CIMI model with Archetype Constraint

The CIMI BMM is then constrained using Archetypes defined in ADL to bind standard terminology such
as 'about' codes and allowable valuesets for coded fields. Also bound can be descriptive text in various
languages. And finally, the cardinality can be further specified. In the figure, an illustrative example of
an Archetype is given on the right which constrains the example BMM model on the left. The 'type' node
from the reference model is bound to an id of 'id4' and then various constraints are bound to 'id4'.

4. Transformation
The transformation from CEMs to CIMI models with respect to inheritance hierarchy could take one of two
approaches. The first approach, as seen in Figure 6, “Asymmetric Hierarchy Transformation”, would be
to compile and collapse the inheritance hierarchy of the CEMs and then transform the resulting collapsed
model. In this approach, the original inheritance hierarchy is lost in the resulting target CIMI models.

CEM to CIMI Con-
version White Paper

5

Figure 6. Asymmetric Hierarchy Transformation

In the second approach, as seen in Figure 7, “Symmetric Hierarchy Transformation”, each model in the
hierarchy is transformed to a parallel model in the target hierarchy, which results in a preservation of the
original inheritance hierarchy. This second approach is the approach we are taking in the transformation
of CEMs to CIMI models for two reasons. First, it allows us the possibility to reverse the transformation
process for parts of the transformation where needed. Second, it will allow the generated CIMI models to
fit within the hierarchy as if CIMI had modeled them rather than simply creating large CIMI compliant
models that stand alone.

Figure 7. Symmetric Hierarchy Transformation

4.1. Transformation Strategy

The goal is to transform the entire library of Intermountain CEM models into an improved CEML syntax
we are calling CEML v3 and then to the final target being official CIMI ADL/BMM. In our previous
attempts at transformation we discovered some limitations in CEML to represent some of the complexities
of the BMM/ADL models being used in CIMI. These limitations in CEML v2 include but are not limited
to documentation, datatype naming, and array slicing. After this process is completed, CEML v2 models
will be retired, and subsequent modeling with continue using CEML v3.

The overall strategy for transformation of Intermountain CEMs to CIMI models is shown in Figure 8,
“Transformation Strategy”. The first step starts in the upper right hand corner of the diagram with the
existing official CIMI models. These CIMI models will be manually modeled as CEMs in the improved
CEML syntax of CEML v3.

CEM to CIMI Con-
version White Paper

6

Figure 8. Transformation Strategy

The next step in the transformation starts on the left hand side of the diagram, where Intermountain Health-
care style CEMs are transformed to CIMI style CEMs in CEML v3. We will be both manually transforming
and programatically transforming diffirent sets of models where appropriate. Collections of models with
similar patterns are better candidates for programatic transformation and will be transformed using XSLT.

At this point, the stack of transformed CIMI Style CEMs can be compiled and validated in the CEML v3
compiler. If the transformed CEMs are all valid, the transformation can continue with a generic syntax
transformation to CIMI BMM and ADL Archetypes. With the final target completed, the entire stack of
CIMI models can be compiled and validated.

Despite the different paradigm between CIMI and CEM, where CIMI describes clinical content in both
the reference and constraint model, and CEM uses only the constraint model, there is actually a close
parallel between the two. Figure 9, “CEML to BMM/ADL Transformation”, shows that the identifier
declarations within CEML map closely to the CIMI BMM reference model. And the constraints within
CEML map closely to the CIMI Archetype ADL constraints. This parallelism will allow us to build the
generic transformation between these two formalisms.

Figure 9. CEML to BMM/ADL Transformation

4.2. Datatype Issues
Even with the similarities, there still remains a few problems for the generic transformation engine.
First, CIMI and CEM use a different set of datatypes. Some of these align quite nicely, such as CIMI's
CODED_TEXT and CEM's CodeableConcept which are both used to represent coded fields. Others such
as CIMI's YESNO and Boolean datatypes have only a partial alignment to CEM's Boolean datatype. A

CEM to CIMI Con-
version White Paper

7

second problem is that the CIMI BMM allows properties to be named datatypes. In other words, the prop-
erty specimenType could be a coded field in the BMM. This is not allowed in a CEM, where the property
specimenType must point to another CEM model and NOT directly to a datatype.

CEML v3 solves both of these problems as we are expanding our allowed datatypes to be more closely
aligned with CIMI. Also, we are adding a syntactic feature which allows an optional property name to
be applied to a datatype.

4.3. BMM Packaging
Another issue regarding the generic transformation involves the packaging of CIMI models within a BMM.
CIMI currently has three BMM files called 'Core', 'Foundation', and 'Clinical' and within each of these,
there are multiple packages, and then a random order to the models within these packages. CEM models,
on the other hand, each exist in their own file and currently have no method to indicate a package. In
CEML v3 we are allowing each CEM to be assigned to a package similar to JAVA packages.

4.4. Recursion Issues
Another problem with the generic transformation is that CIMI models within the BMM allow recursion.
For example, a Substance model could reference an Ingredient model which could then reference the orig-
inal Substance model creating an infinite recursive tree from Substance on down. Although the CEM Ab-
stract Instance Model is recursive with respect to the generic Clinical Element, CEML currently does not
allow recursive constraint models. The simplest solution here is to modify the CEM compiler to allow
recursion. It should be noted that the CEM compiler did allow recursion in the past, and it is being rein-
troduced for CEML v3.

4.5. ADL and CEML Constraint Consistencies
ADL and CEML Constraints used to bind terminology to the model, such as simple binding of about codes
and valuesets have high consistency and should pose no problems in the transformation. Also, cardinality
constraints within the two should pose no problems.

4.6. ADL and CEML Constraint Inconsistencies
One major difference that exists between CEML and ADL is the ability of one constraint model to peek
into another constraint model and further constrain that model. This is called an 'inner constraint', as the
outer model is constraining the inner model. This can be seen in Example 1, “CEML for Systolic Blood
Pressure”, where the SystolicBloodPressure model constrains the valueset of the inner BodyPosition mod-
el. ADL does not have a mechanism to step into another ADL model and further constrain that inner
model. But ADL does have the ability to walk a deep path in the BMM to apply a constraint, so in many
cases it won't be a problem. In the CEML example above, this problem could be solved by creating a
SystolicBloodPressureBodyPosition model thus constraining with a new model rather than an inner con-
straint. CEML v3 will still allow 'inner constraints', but they will not be used to constrain Complex models
in our collection of CIMI style models. Also, CIMI is currently evaluating the need for inner constraints
and could result in ADL changes in the future.

Another problem is the random assignment of id's in ADL such as 'id2', 'id5', and 'id34'. CIMI has made the
decision that these id's are a problem for all tooling, and are currently developing an algorithm to dictate
their naming. This algorithm will allow any transformation to calculate the correct 'id'

4.7. Style Transformation
The Style Transformation, as seen in Figure 10, “Style Transformation”, will use existing Intermountain
Healthcare CEMs as the source of the transformation. These CEMs currently exist both in CEML and in

CEM to CIMI Con-
version White Paper

8

XCEML with the latter being an XML representation of the CEML syntax. It is the XCEML form that
will be used as input for both manual and the style transformation engine which will use XSLT for the
transformation, and generate CIMI style CEMs in XCEML v3 syntax. The XSLT engine will provide
XSLT functions to simplify writing transformation rules for the modeler. Functions will also be provided to
call external java functions for terminology lookups or complexities that arise such as CEML path parsing.

It should be noted that although Intermountain Healthcare has finished the models we require, they have
not finished all of the terminology mapping for these models. It is likely that all terminology mapping will
not be completed and will be an ongoing endeavor.

Figure 10. Style Transformation

5. Conclusion
Our previous transformation work between CEMs and CIMI revealed expressivity problems with CEML
v2 which are now being addressed in CEML v3. Although it is probable we will encounter issues not
discussed in this white paper, Intermountain is committed to solve these problems with any needed changes
to CEML v3. Using the transformation methodology presented will give us a high probability for success
in the transformation of all Intermountain CEMs to CIMI models.

	CEM to CIMI Conversion White Paper
	Table of Contents
	1. Introduction
	2. Clinical Element Model
	3. CIMI Model
	4. Transformation
	4.1. Transformation Strategy
	4.2. Datatype Issues
	4.3. BMM Packaging
	4.4. Recursion Issues
	4.5. ADL and CEML Constraint Consistencies
	4.6. ADL and CEML Constraint Inconsistencies
	4.7. Style Transformation

	5. Conclusion

